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1. Introduction 

In this paper we present the exact probability 
distribution of the ratio of two correlated gamma 
random variables for a given bivariate gamma struc- 
ture. Interest in the theory and application of 
ratios of random variables has been present in the 
literature for many years. The first two authors 
[5] have reviewed some of these results. 

The probability distribution of the ratio of 
two independent r.v.'s is generally easy to obtain, 
cf. Kendall and Stuart [11, p. 265]. It is well 
known that the distribution of the ratio of two 
independent normals is Cauchy and of two indepen- 
dent gammas is the Inverted Beta Type II, Kullback 
[12]. However, the literature on the distribution 
of the ratio of two correlated r.v.'s is less de- 
veloped. 

Geary [7] was apparently the first to present 
results for the ratio of two correlated normals, 
under the restriction of an always positive denomi- 
nator. Fieller [4] obtained more general results 
for the same problem. Rietz [15] presented results 
for the ratio of correlated uniform r.v.'s. In 

1937, Cramér [2] showed that the p.d.f. of the 
ratio r =U /V of two continuous r.v.'s with P(V >0)=1, 
E(V) is given by an inversion formula which is 
in terma, of the joint characteristic function of 

U and V. Application of this approach requires, 
of course, knowledge of the joint characteristic 
function and the ability to perform the indicated 
integration. Gurland [9] has generalized this 
result by presenting an inversion formula for the 
probability distribution of a ratio of linear com- 
binations of the same random variables. This for- 
mula is based on an n- variate characteristic func- 
tion. In 1952, C. R. Rao [14, p. 207] showed that 
under very general conditions the standardized 
ratio of two means is asymptotically normally dis- 
tributed. More recently, Marsaglia [13] has 
studied the probability distribution of the ratio 
of correlated normal r.v.'s, providing 63 computer - 
drawn plots of p.d.f.'s to illustrate that the dis- 
tribution may be symmetric or skewed and unimodal 
or bimodal. 

2. A Bivariate Gamma Distribution 

Let X, Y, Z be independently distributed 
gamma r.v.'s with skew parameters a,b,c and a 
common scale parameter X', e.g., 

a'x/r(a), x>0, a>0, a'>0. (1) 

Following Weldon's approach, David and Fix 
.defined that for =1, U =X +Y and V =X +Z are 
variate gamma distributed with density 

gU,V(u.v) 
min {u,v) 

r(a)r(b)r(c)5 
e-u-v 

ta-1(u-t)b-1(v-t)c-letdt 

and correlation coefficient p /[(a +b)(a +c)]1/2. 

[3] 

bi- 

(2) 
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In this paper we consider the distribution of 

the ratio of gamma variables 

r=U/V=(X+Y)/(X+Z) 

It is clear that the scale parameter X' does not 

appear in the p.d.f. of r, hence we may take X' 

in further discussion of the distribution. Flueck 

and Holland [5, 6] have previously presented re- 

sults for the moments of r and a first attempt at 

its distribution. 

A disadvantage of the above bivariate gamma 
formulation (2) is that it does not admit nega- 

tive values of the correlation coefficient p. The 

authors are also examining other bivariate gamma 

distributions (see Johnson and Kotz [10]). 

The ratio r easily generalizes to the ratio 

of sums of gamma variates, 

r *= E (Xi +Yi)/ E (Xj 

i j =1 

where the {Xi), {Yi} and are mutually inde- 

pendent r.v.'s identically distributed within each 

set. If we let r(a,b,c) denote the probability 

distribution of r with numerator skew parameters 

a and b, and denominator skew parameters a and c, 

it can be shown, using the regenerative property 

of the gamma distribution, that 

(r(na, (m -n)a + mb, nc), m >n 
r* (3) 

r(ma, mb, (n -m)a + nc), 

i.e., r* is a member of the same family of proba- 

bility distributions as r. 

An extension of r is 

r' = Ar = X(X +Y) /(X +Z) 

so that the numerator is gamma distributed with 

scale parameter X' /X rather than a'. 

3. Derivation of the Probability Density of r. 

Let T =X /(X +Z). Then the joint density of 

r, T, and V is 

f(r,t,v;a,b,c)=(tv)a-1e- 
tv 

r (a) 

[v(r-t)]b-le v(r-t) 

r(b) 

[v(1-t)]c-1 v(1-t) 2 v2, 0<r, 0<v, 0<t<min{l,r}, 

and the joint density of r and t is 

f( r, t; a, b, c) =K(a,b,c)ta- 
1(r- t)b- 

1(1 
-t)c 

-1 

a +b+c 
(1 -t +r) 

0 <t <min {l,r }, 



where 

K(a,b,c) =r(a +b +c) /r(a)r(b)r(c). 

Hence the p.d.f. of r is 
{1, 

f(r;a,b,c) _(f(r,t;a,b,c)dt, r >0. (4) 

Evaluation of (4) by elementary methods 
appears possible only when a,b,c are all positive 
integers. For example, when a= b =c =1, (i.e., X, 

Y, Z each exponential r.v.'s), 

f(r;l,l,l)=[max{l,r}]-2 - r>0. 

We attempted to obtain (4) in closed form using 
the inversion formula in Gurland [9]; however, 

the integral in the inversion formula has proved 
difficult to evaluate. 

Next we considered calculation of (4) by 
numerical methods [6], including Simpson and 
Romberg integration. However, the p.d.f. (4) 

often has vertical asymptotes at r =0 and r -1; 
these created problems in obtaining adequate 
numerical accuracy within reasonable economic 
limits. 

The approach finally adopted and discussed 
below involved rearrangement of the integral in 
(4) so that it may be expressed as a weighted 
difference of hypergeometric functions. The 
hypergeometric functions are defined and conver- 
gent except possibly at r =1. 

In (4), for rsl, replace t with rt to yield 

f(r;a,b,c) 

1 

K(a,b,c) J dt, 
(1-rt+r) 

(5) 
1 

ta-1(r-t)b-1(1t)c-1 

K(a,b,c) a+b+c dt, r>1. 

0 

For r51 it follows from the identity 

r = (1 -rt+r) - (1 -rt) 

and 3.211, 9.1821 in [8, pp. 287, 1054] that 

f(r;a,b,c) 
i 

K(a,b,c) 
ra+b-2 ta-1(1-t)b-1(1-rt)c-1 

dt - 

(1-rt+r)a+b+c-1 

fta-1(1-t)b-1(1-rt)c dt 

(1-rt+r)a+b+c 
o 

= K( a, b, c) B( a, b) b- b- +b ;r2) 

-F(a,- c,a +b;r2)], (6) 

where F(ki,k2,k3;x) is the hypergeometric function 

(see [1]) and 

B(k4,k5) =r(k4)r(k5) /r(k4 +k5), k4, k5 > O. 

Note that F may not converge when r=1. Similarly, 
when r >1 we use the identity 

1- (1- t+r) -(r -t) 

to arrive at 

f( r; a, b, c)= K( a, b,c)B(a,c)rb- a- 1(l+r)- b- c[(l+r) 

F( a ,l- b,a+c;r rF(a,- b,a+c;r -2)]. (7) 
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It is interesting to note that if c in (6) or b 
in (7) is an integer then the series expression 
of the corresponding hypergeometric function 
contains only a finite number of terms. 

Unless r =0 or r =1, we have found that (6) and 
(7) are satisfactory for numerically computing 
f(r;a,b,c). In most cases less than 100 terms of 
the hypergeometric series are needed to obtain 
accuracy to five decimal places, the rate of con- 
vergence depending on r, a, b, and c. For the 
two points r and r=1, analytic formulas have 
been developed for the p.d.f. and its derivatives. 

The presentation here is restricted to a pre- 
sentation of results; derivations of the analytic 
formulas rely on the Lebesgue Dominated Convergence 
Theorem and Fatou's Lemma. 

The behavior of f(r;a,b,c) at r is princi- 
pally governed by the value of a+b. We find: 

if a+b>1 
f(r;a,b,c) c if a+b=1 

if a+b<1 

and 

(8) 

if a+b>2 
c(c+l) if a+b=2 

lim f'(r;a,b,c) if 1<a+b<2 (9) 
c(2a-1-c) if a+b=1 

if a+b<l 

For k >l, the expression for 

lim f(k)(r;a,b,c) 
r0 

is quite complicated and we note that the limit may 
conceivably be positive or negative. 

On the other hand, the shape of f(r;a,b,c) in 
the neighborhood of r =1 is primarily governed by 
b and c. If b+c >l, then f(r;a,b,c) is continuous 
at r =1 and 

f(l;a,b,c)=r(b+c-1) 2a+b+c-1 , 

r(b)r(c) (10) 



while if b+cal and a >0, 

f(1- ;a,b,c) = f(l +;a,b,c) = (11) 

If b+c >2, f'(r;a,b,c) is continuous at r =1 and 

c- 1[(- 
a +b -c -2) 

a(-a+3b-c-4) a(a+l)(2a+3b+c) 
a+b+c-2 (a+b+c-2)(a+b+c-1)]' 

(12) 

Note that (12) may be positive or negative. Next, 
if 0 <b+cs1 and a >0 we find 

f'(1-;a,b,c)== f'(l+;a,b,c)=-* (13) 

The intermediate case 1 <b+cs2, a >0 breaks down 
into six subcases as follows: 

If c>1 and b<1, 

f'(1-;a,b,c)= f'(l+;a,b,c)= (14a) 

if c=1 and b=1, 

f'(1 ;a,b,c)=14(2a2-1), f'(1+;a,b,c)=-14(2a2+4a+1); 

(14b) 
if c =1 and b <1, 

f' ;a,b,c)-1472(4a2+4ab+b2-4a-3b), 

f'(l+;a,b,c)=-=; (14c) 

if c<1 and b>1, 

f' ;a,b,c)==, f'(l+;a,b,c)==; (14d) 

if c<1 and b=1, 

f'(1-;a,b,c)=m, f'(14;a,b,c)=-(3a2+3ac+c2+3a+c); 
2 (14e) 

if c<1 and b<1, 

f'(1';a,b,c)==, f'(1+;a,b,c)=-=. (14f) 

For a -0, the independent case, the results for 
f(r;a,b,c) and f'(r;a,b,c) follow from [12], with 

1 rb -1 
f(r;0,b,c) 

B(b,e) (1- 

4. Discussion of the Probability Density of r. 

It is seen from (8) -(14) that the shape of 
f(r;a,b,c) is determined by a, b, and c. To 
catalogue the situation, we present a 36 -cell 
partitioning of the parameter space {(a,b,c): 
an, b >0, c >0 }. Table 1 summarizes the implica- 
tions of (8) -(14) for each cell, while Figures 
1-4 contain Calcomp computer plots of f(r;a,b,c) 
for selected values of a, b, c in order to dis- 
play the various members of the family. Note 
that in the Table and in the following discussion 
we abbreviate f(r;a,b,c) to f(r). Also we use 
the symbol k to represent a non -negative finite 
generic constant and k* to represent a positive 
finite generic constant. 

It is clear from the Figures that the graph 
of f(r;a,b,c) can assume many unusual shapes and 
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that its appearance is sensitive to small changes 
in the parameters a, b, c. The following are 
among the special features of f(r;a,b,c): 

1. There is a vertical asymptote at r 
(f(O;a,b,c)== and f'(0;a,b,c)=-co) iff 

a +b <1. 

2. If a +bsl, the distribution may be bimodal 
with modes at r =0 and r =1. 

3. There is a vertical asymptote at r 
( f( 1-; a,b,c) =f(l +;a,b,c) =f'(1-;a,b,c) 
and f'(1 +;a,b,c) iff 

4. If b+c52, f'(r;a,b,c) is discontinous at 
r=1. 

5. The slope of the p.d.f. at r=0, f'(0;a,b,c), 
may be extremely senstitive to small 
changes in a+b. For example, it follows 
from (9) that 

if a+b 0.99 
f'(0;a,b,c) ±k if a+b 1.00 

= if a+b 1.01 

The Figures also suggest that as a, b, c, 

each increase, the distribution of r approaches 
normality. Notice that if in (3) we have m=n, 
the ratio of sums r* is also a ratio of means, and 

r*--r(na,nb,nc). 

Applying a general lemma of C. R. Rao [14], 
it easily follows that 

[r(na,nb,nc)- (a+1-7e) 
(a+c) 

This implies that the large sample distribution of 

r(na,nb,nc) approaches normality as n increases 
and ultimately becomes degenerate at (a +b) /(a+c). 

For completeness we also wish to mention that 
the first two authors [5] have pointed out that a+c 
is the quantity which determines whether or not 
moments of r are finite; in particular, it was 
found that 

E(r)<= iff a+c>1. 

and 

Var(r)<= iff a+c>2. 

The fact that some moments of r may be infinite 
is further evidence of the unusual nature of the 
distribution of r. 

5. Conclusion 

This paper has presented exact "closed form" 
distributional results (6), (7) for the ratio of 

two correlated gamma r.v.'s. These results also 

allow the statistician to obtain an efficient 
numerical, approximation to the exact distribution 
with any degree of accuracy. 



The results presented above for the ratio of 
correlated gamma variates suggest that the proba- 
bility distributions of ratios of random variables,' 
and of small -sample ratios of sums of random 
variables, often take unusual forms. In addition 
to the distribution theory presented here, the 
p.d.f.'s have an important implication for the 
practicing statistician: calculation of proba- 
bility statements involving ratios of r.v.'s is 
often undertaken assuming normality, but as the 
above graphs have shown, tiese calculations must 
be treated with considerable caution. Further- 
more, our results indicate that the accuracy of 
such probability calculations may rely heavily 
on precise estimation of the parameters of the 
ratio distribution. We hope to address this and 
other problems in future papers as part of our 
continuing study of ratios of random variables. 
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* The authors' names are listed in alpha- 
betical order. 



b+c>2 

Table 1. 

a+b>2 

Summary of Behavior of f(r) = f(r;a,b,c) for r =0,1. 

1<a+b<_2 a+b=1 a+b<1 

f(0)=0 
f'(0)=0 
f (1)=k* 

f'(1)=±k 

f(0)=0 
f'(0)=c(c+l) 
f (1)=k* 
f'(1)=±k 

f(0)=0 
f'(0)=m 
f (1)=k* 

f'(1)=tk 

f (0)=c 

f'(0)=c(2a-1-c) 
f (1)=k* 
f'(1)=±k 

f (0)=m 

f'(0)=-m 
f (1)=k* 

f'(1)=±k 

1<b+cS2 c>1, b<1 f(0)=0 
f'(0)=0 
f (1)=k* 

f(0)=0 
f'(0)=c(c+l) 
f (1)=k* 

f(0)=0 
f'(0)=m 
f (1)=k* 

f(0)=c 
f'(0)=c(2a-1-c) 
f (1)=k* 

f(0)=m 
f'(0)=-m 
f (1)=k* 

f' (1-)=-0o f'(l-)=-00 f'(l-)=-m f'(1-)=-00 f'(1-)=-00 

f' f'(1+)=-m 

c=1, b=1 f(0)=0 f(0)=0 f(0)-0 f (0)=c 

f'(0)=0 f'(0)=c(c+1) f'(0)=m f'(0)=c(2a-1-c) 
f (1)=k* f (1)=k* f (1)=k* f (1)=k* Impossible 
f'(1-)=k* f'(1-)=k* f'(1-)=tk f'(1-)=-k* 
f'(1+)=_k* f'(1+)=_k* f'(1+)=-k* f'(1+)=-k* 

c=1, b<1 f(0)=0 f(0)=0 f(0)=0 f (0)=c f (0)=m 

f'(0)=0 f'(0)=c(c+l) f'(0)= f'(0)=c(2a-1-c) f'(0)=-00 

f (1)=k* f (1)=k* f (1)=k* f (1)=k* f (1)=k* 

f'(1-)=k* f'(1-)=k* f'(1-)=±k f'(1-)=-k* f'(1-)=-k* 

f'(l+)=_m f'(l+)=-m 

c<1, b>1 f(0)=0 f(0)=0 f(0)=0 
f'(0)=0 f'(0)=c(c+l) 
f (1)=k* f (1)=k* f (1)=k* Impossible Impossible 

f'(1-)=m f'(l-)=m f'(1-)=m 
f'(11-)mm f'(l+)=m 

c<1, b=1 f(0)=0 f(0)=0 f(0)=0 f (0)=c 

f'(0)=0 f'(0)=c(c+l) f'(0)=m f'(0)=c(2a-1-c) 

f(1)=k* f(1)=k* f(1)=k* f (1)=k* Impossible 

f'(1-)=03 f'(1-)=m 

f'(1+)=-k* f'(1+)=-k* f'(1+)=-k* 

c<1, b<1 f(0)=0 f(0)=0 f(0)=0 f (0)=c f(0)=0* 

f'(0)=0 f'(0)=c(c+l) f'(0)=03 f'(0)=c(2a-1-c) f'(0)=-m 

f (1)=k* f(1)=k* f(1)=k* f (1)=k* f 

f'(1-)=m f'(1-)=m 

f'(l+)=-m f'(l+)=-m f'(1+)=_m f'(l+)=_m f'(1+)=+m 

b+cs1 f(0)=0 f(0)=0 f(0)=0 f (0)=c f 

f'(0)=0 f'(0)=c(c+l) f'(0)=03 f'(0)=c(2a-1-c) f'(0)=-03 

f (1)=m f (1)=m f (1)=m f(1)=m f(1)=m 
f'(1-)=m f'(1-)=03 f'(1-)=m f'(1-)=m 

f'(l+)=_m 
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Figure 1. Plots of f(r;a,b,c) versus r. 
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Figure 2.. Plots of f(r;a,b,c) versus r. 
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Figure 3. Plots of f(r;a,b,c) versus r. 
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Figure 4. Plots of f(r;a,b,c) versus r. 
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